Calibre nmOPC Next Generation Platform for Computation Lithography

Product Launch - Editor Presentation

Joseph Sawicki
VP AND GENERAL MANAGER
DESIGN TO SILICON DIVISION

November 29, 2006

araphas and a second of the se

Introducing Calibre nmOPC Accelerating Customer Success at 45nm

Key Product Capabilities

- Grid-based, Dense Simulation Engine used for OPC
 - First introduced by Mentor in Calibre OPCverify
- Co-Processor Acceleration Capability
- New Streamlined Hierarchy Engine
- 4th Generation Modeling
- Design Intent Awareness
 - Preserves Functionality
- Process window correction

Why dense simulation?

Grid-based simulation more efficient with increasing layout density

65nm sparse simulation 45nm sparse simulation

45nm dense simulation

10 Sites/Shape; 15 simulations/site; 450 simulations

Grid-based simulation sites; 182 simulation sites

OPCpro

nmOPC

Critical Layer Runtime Advantage

45nm Poly Layer Design equivalent recipe

Dense Computational Efficiency vs. Sparse

Crossover point depends on OPC Recipe and Chip Style

Deployment Will Utilize Both Mentor Tools

% Layers using Model-Based OPC

Co-Processor Acceleration (CPA)

Uses High Performance CellBE® processor for Image Simulation

Note: Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. Cell BE is a collaborative development by Sony, Toshiba and IBM.

Matching the Task to the Architecture

Why Cell BE?

Why Cell BE?

- Supercomputer on a chip; network on a chip
 - 1 Power PC + 8 Synergistic Processing Elements
 - Unique architecture for image processing
- Standard Hardware Platform
- > 7X more computational power (GFLOPS) than FPGA's
- Software programmable for rapid implementation
- Calibre OPC simulations using FFT's are ideally suited for this processing platform
 - > 80% OPC run time consumed in simulation
 - 50 to 100x acceleration of simulation component of OPC

COO for a High Performance Cluster

(with and without co-processor acceleration)

The Culmination of a Very Busy Year

MAR APR MAY JUN JUL AUG JAN SEP OCT NOV DEC January 9 March 6 July 10 November 29 Calibre nmDRC Calibre Calibre Calibre Calibre OPCverify LFD nmDRC nmOPC

Calibre nmOPC Launch

The Rise to Power... of Power *

 "Although energy costs account for less than 10% of most IT budgets, they could rise to more than 50% in a few years." Gartner

45nm without CPA

Computing Capacity

- 750 to 1000 cpus
- Power Requirements
 15 20 kw / rack +
 Cooling

45nm with nmOPC

Computing Capacity

- 100-200 cpus + 1 CPA cluster (25-50 cell processors)
- Power Requirements
 \$75-100k energy savings/ year / system

^{*} Jerald Murphy, Robert Frances Group

New Streamlined Hierarchical Processing

Accelerates Runtime to Improve COO

Dense Simulation Resist Modeling

Progress in modeling

Dense simulations

	VT5	CM1
Accuracy	+	++
Dense Simulation Speed	+	++
Stability	+	++
Calibration Automation	+	++
Process Window Accuracy	+	++

4th Generation Resist Process Modeling

Accurate, Stable with Automated Optimization

45nm Normalized Model Accuracy [err rms]

CM1 – VT5 Process Window Accuracy Comparison

Yellow VT5 Red CM1

Unified Infrastructure Across the Product Line

Sources of Lithographic Variability

Two main sources of lithographic variability

- Dose: variation in intensity
- Focus: variation of wafer in z axis

Defines a manufacturing window, commonly referred to as "the process window"

Image Resolution Highly Sensitive to Process Window and RET Strategy

- Increasing sensitivity of pattern fidelity to process variation and layout topology
- Process Window OPC checks required to assure yield

 more computation, more time

Process Window OPC

- Define a Process Window (in this case, +-1nm mask, +-10% dose, nominal + defocus)
- Use OPC to <u>decrease</u> sensitivity to: Dose, Focus, Mask Sizing

Design Intent: Contact Overlap nmOPC ensures adequate contact coverage

Ordinary OPC

 Optimizes edge placement error for correction layer

Circuit-aware OPC

- OPC prioritizes contact coverage over edge placement error
- Improved process yield

Calibre nmOPC Product Introduction

- Addresses critical technical and business issues in Computational Lithography for the 45nm process node
 - Computational Complexity supercomputer capacity required
 - Turn Around Time (TAT) must not increase over 65nm
 - Cost of Ownership geometrically increasing
- Next Generation OPC tool from the leader in model-based OPC tool deployment with 32 fabs using Calibre OPCpro
- Developed within Mentor by the same architects that created Calibre OPCpro
 - > 150 years of OPC experience represented in this development
 - Collaborative development support from 6 key IC manufacturers

Gate CD Prioritization

- Single command in nmOPC optimizes correction for Gate CD uniformity
- Simplifies set up file generation
- Improves parametric yield

Meeting the Challenge of 45nm and Bellow

- Solves the crisis in cost of ownership and turn around time
- Provides the new level of accuracy required for low k1 imaging
- Add new yield-enhancing functions that ensure image fidelity across the process window targeting design intent

Computational Complexity at 45nm Creates a Compelling Business Need

- More complex models more simulation time required
- Dense design layers: more shapes being processed

